Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet conditions.
نویسندگان
چکیده
The beneficial effect of clothing on a person is important to the criteria for people exposure to radiant heat flux from fires. The thermal protective performance of multilayer thermal protective clothing exposed to low heat fluxes during dry and wet conditions was studied using two designed bench-scale test apparatus. The protective clothing with four fabric layers (outer shell, moisture barrier, thermal linear and inner layer) was exposed to six levels of thermal radiation (1, 2, 3, 5, 7 and 10kW/m(2)). Two kinds of the moisture barrier (PTFE and GoreTex) with different vapor permeability were compared. The outside and inside surface temperatures of each fabric layer were measured. The fitting analysis was used to quantitatively assess the relationship between the temperature of each layer during thermal exposure and the level of external heat flux. It is indicated that there is a linear correlation between the temperature of each layer and the radiant level. Therefore, a predicted equation is developed to calculate the thermal insulation of the multilayer clothing from the external heat flux. It can also provide some useful information on the beneficial effects of clothing for the exposure criteria of radiant heat flux from fire.
منابع مشابه
Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability.
The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective ...
متن کاملPhysiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate.
This study determined the influence of exercise intensity, protective clothing level, and climate on physiological tolerance to uncompensable heat stress. It also compared the relationship between core temperature and the incidence of exhaustion from heat strain for persons wearing protective clothing to previously published data of unclothed persons during uncompensable heat stress. Seven heat...
متن کاملA Heat Transfer Model for Firefighters’ Protective Clothing, Continued Developments in Protective Clothing Modeling
In the year 2000, a paper entitled ‘‘A Heat Transfer Model for Firefighters’ Protective Clothing’’ was published in Volume 36, No. 1, of Fire Technology, and it received the 2001 Harry C. Bigglestone Award for Excellence in Written Communication of Fire Protection Concepts from The Fire Protection Research Foundation. Since the publication of this paper, there has been additional development of...
متن کاملAnalysis of the Thermal Comfort Properties and Heat Protection Performance of Cotton/Nylon-Kermel Fabrics
In this research, fire and radiant heat protection and thermal comfort properties of cotton/nylon-Kermel blended woven fabrics, were utilized to predict the thermal comfort and protection limit of this fabric structure based on Woo and Barker developed model. The results showed that the porosity, the air permeability and the thermal resistance increased with Kermel fiber blend ratio. Conversely...
متن کاملThermal Strains Wearing Aluminized Firefighters’ Clothing
This study examined the influences of aluminized (Type A) and non-aluminized firefighters’ protective clothing (Type B, C, D and CON) on physiological and subjective responses in radiant heat. Total clothing weight was 6.24, 6.38, 6.06, 5.76 and 3.82 kg for Type A, B, C, D and CON, respectively. Eight firefighters performed exercise at an air temperature of 30°C with 50%RH. Three bouts of 10 mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 276 شماره
صفحات -
تاریخ انتشار 2014